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A weighted-density-functional theory is developed for inhomogeneous ionic fluids and applied to the
structure of the electric double layer using the restricted primitive model where the ions are considered
to be charged hard spheres of equal diameter. The formalism is nonperturbative with both hard-sphere
and electrical contributions to the one-particle correlation function evaluated through a suitably aver-
aged weighted density, the only input being the second-order direct correlation functions of the corre-
sponding uniform system. Numerical results on the ionic density profile and the mean electrostatic po-
tential near a hard wall at several surface charge densities are shown to compare well with available

simulation results.

PACS number(s): 61.20.Gy, 61.20.Ne, 68.45.Da, 82.45.+z

I. INTRODUCTION

Density-functional theory (DFT) has established itself
as a highly powerful tool for studying the equilibrium
properties of nonuniform fluids [1], which include a wide
class of problems, viz. the liquid surface [2], freezing of
liquids [3] and many other interfacial phenomena [4].
One can also study the structure of classical uniform
fluids using a density-functional approach [5,6]. DFT
has, however, been restricted mostly to neutral liquids
[7-9] and its application to ionic or dipolar liquids has
attracted attention rather recently [10,11].

In a density-functional approach, one employs the
single-particle density as the basic variable for the
description of a many-particle system. For this purpose,
the grand potential for the system is first to be expressed
in terms of the density, which on minimization leads to
the expression for the equilibrium density distribution.

The exact functional form of the grand potential is,
however, not known in general, and therefore the crux of
the problem lies in finding a suitable approximation to ex-
press this functional in terms of the density. Most of the
variants of DFT that are normally used correspond to
different schemes of this approximation procedure. In
many cases, the form of the functional is known for a uni-
form system, and this knowledge is often used to con-
struct the functional for the corresponding nonuniform
system.

The simplest approach that is followed is a Taylor-
series expansion of the functional with respect to the in-
homogeneity around the homogeneous bulk density.
This perturbative approach has been employed in many
problems and has been partially successful as well. How-
ever, since the series is usually truncated at the second-
order term, in most of the cases this perturbative ap-
proach might lead to considerable inaccuracy especially if
the inhomogeneity is not weak.

Nonperturbative approaches to DFT have therefore
been proposed recently. The commonly used ones are
based on the weighted-density approach and its generali-
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zations. The two recent successful theories based on a
weighted-density scheme are due to Tarazona [12,13] and
Curtin and Ashcroft [7] and Denton and Ashcroft [8,9].
In a weighted-density approach (WDA), either the excess
free energy or its functional derivative (the first-order
correlation function) for the nonuniform fluid is approxi-
mated by that of the corresponding uniform fluid of a
different smoothed average density, determined from
suitable weighted averages of the actual nonuniform den-
sity of the system. In the Tarazona version of the WDA,
it is the excess free energy which is approximated and the
associated weight function is expressed as a truncated
density expansion where the coefficients are determined
by fitting the corresponding direct correlation function to
that from the Percus-Yevic approximation. The WDA of
Ashcroft et al., however, approximates the first-order
correlation function and the weight function is given by
an analytical expression in terms of the first- and second-
order correlation functions of the uniform system. Both
these approaches have recently been employed quite suc-
cessfully to the study of structure of hard-sphere fluids
and their mixtures near a hard-wall potential [9,14]. The
predicted inhomogeneous density of the fluid near the
surface provides important information about the essen-
tial features of the interface.

Another nonuniform system that is of much interest is
the electric double layer (EDL) [15,16], the region of in-
homogeneous ionic distribution in an electrode-
electrolyte interface, resulting from the charge separation
under the influence of the electric field produced by the
surface charge. The structure of the EDL is known to
play an important role in various electrochemical, col-
loidal, and biological phenomena, and its understanding
and prediction have attracted a great deal of attention
over the years.

The simplest and most thoroughly studied model for
the EDL is the restricted primitive model (RPM), where
the electrolyte is assumed to consist of ions which are
charged hard spheres of equal diameter, immersed in a
solvent which is treated as a continuum isotropic dielec-
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tric medium. The electrode is considered to be an infinite
planar, polarizable and impenetrable hard wall contain-
ing a uniform surface charge density.

The purpose of the present work is to introduce a suit-
able nonperturbative weighted-density approach to DFT
of nonuniform ionic fluids and apply it to study the struc-
ture of the EDL. Although recently there has been in-
terest in applying DFT to the study of the EDL, these
studies have mostly used a combination of the WDA and
the perturbative schemes. Thus Davis et al. [10,11] uses
the Tarazona model of the WDA to the hard-sphere con-
tribution to the correlation function, while for the ionic
part they use second-order perturbation expansion
around the bulk density. Groot [4,17], on the other
hand, has determined a coarse-grained density for the
ions considering both hard-sphere and ionic contribu-
tions but uses it as a zeroth-order density to carry out a
perturbation expansion around it.

Our objective in this work is to introduce a fully non-
perturbative version of DFT for the inhomogeneous ionic
distribution near the electrode-electrolyte interface by
generalizing and extending the WDA of Denton and
Ashcroft [9] to ionic systems. After developing the
theory in Sec. II, we present the results of numerical cal-
culations in Sec. III. Finally, we offer a few concluding
remarks in Sec. IV.

II. THEORY

We consider a system consisting of two ionic com-
ponents (a and f3) dissolved in a solvent (considered as a
uniform dielectric continuum), and distributed under the
influence of an external potential (denoted as u,(r) for
the ath component). The grand-potential functional for
this system at fixed temperature (7'), volume, external
potential and chemical potential (u, for the ath com-
ponent) is given by

Q{pa)1=Fl{pa) 1+ 3 [dru,rip,(r)

-3 fdr,uapa(r) , (1)
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where F[{p,}] is the intrinsic Helmholtz free-energy
functional, p,(r) being the nonuniform single-particle
density of component a and the summation is over both
the components. The true equilibrium density distribu-
tion of each component corresponds to the minimum of
the grand potential with respect to the component densi-
ties and is determined by the equation
8F[{pa}]

Po=u,(r)+ Spur) (2)
The free-energy functional F[{p,}] consists of an ideal-
gas free-energy functional representing the free energy of
the nonuniform system in absence of internal interactions
and an excess free-energy contribution F,,, viz.

Flipa}1=(1/B) S [drp(r) In(p(DA3)—1]

+F[{pa}] 3)

where B=(kBT)_1, kg being the Boltzmann constant,
and A, is the de Broglie wavelength of the ath com-
ponent.

The excess free energy F,,[{p,} ] originates from inter-
nal interactions within the system and is in general un-
known. It defines the direct correlation functions of
different order through functional derivatives, the most
important ones being the first- and second-order correla-
tion functions defined, respectively, as

(1) - _ t_)vFex[{:Da}]
e n)=—p—p -5 (4)

8Follpa] _ bel(x)
2 — ex a = e
Cap(Ty,13) Bapa(rl)SpB(rz) 8pp(ry)

(5)

For a system consisting of charged hard spheres (g, be-
ing the charge of the ath species), the direct Coulomb in-
teraction contribution can be extracted and the excess
free energy can be expressed as

Follpa}1=(17260S 3 qaqp [ [ dridryp (r)pg(n) /Iy — 1, + FES[{p ) 1+ Fd [ {pa} ], (6)
a B

where € is the dielectric constant of the medium. The
corresponding separation in the correlation functions
leads to the results

et (r))=(B/e), [ dr' 3 appylr’) /Ir;— 1|
5

+c§11)HS(r1;[{Pa}])+Cs)el(r1;[{pa}]) , )
c(r,,1,)=(B/€)qoqp/ |1, —1,|

+cﬁlzB)Hs(r,,rz)+c(azl}"l(r1,r2) , (8)

where the middle terms on the right-hand side (rhs) are
the contribution to the correlation functions solely due to
hard-sphere (HS) interactions, the first terms indicate ex-

I

plicit Coulomb interactions, and the third terms
represent extra electrical contributions arising from the
coupling of Coulombic and hard-sphere interactions.

In the RPM model of the planar electric double layer,
the density variation is along the z direction (i.e., perpen-
dicular to the electrode surface) and the external poten-
tial u,(z) consists [11,15] of Coulomb potential due to
the surface charge density o and the hard-sphere poten-
tial, viz.

U (z2)=q tucon(z)tuys(z), 9
with
Ucou(Z)=—2m0oz/e—2moz/[€etuys(z)], (10a)
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o forz<d/2
0 forz>d/2,

(10b)
ups(z)= (100)
where d is the diameter of the hard spheres.

Using Eqgs. (3)-(9), Eq. (2) can be rewritten as

1o = (1/BY{In[po(r)A%]+cV(r;[ {po} 1D} +u,(r)
=(1/B){In[p(r)A3]+c (5[ {p,} 1)
e[ {pa 1))

tuys(z)+q,¥(z), (11)

where 9(z) denotes the mean electrostatic potential due
to the surface charge (i.e., ¥y, ) and the ionic distribu-
tion [see the first term on the rhs of Eq. (7) representing
the direct Coulomb part of c¢!!’]. Here the quantities
c M3 (r;[ {pg}]) and c“)"l(r,[{pa} 1) denote, respectively,
the hard-sphere and the electrical-hard-sphere coupling
contributions to the first-order correlation function.
Since the ionic density varies only along the z direction,
¥(z) obtained from the solution of the corresponding
Poisson equation in one dimension is given by the
simplified expression

Wz)=—(4mo /€)z— (47 /€)z fozdz’ > q.p2")

—4n/e) [ “dz'z" 3 qupalz’) (12a)
z a
which can also be rewritten as
Wz)=(4m/e) [ “dz'(z—2") 3, qupalz’) (12b)
using the electroneutrality condition given by
fo“’dz'zqapa(z'Ha:o. (13)

Evaluating the chemical potential p, using the bulk
phase density p2 in Eq. (11) and substituting this value in
the same equation, one obtains

—Bg W(r)+c PES(r;[ {p.} ]
e Lpa) D—ed™ (L{pe} D
=PI (14)

Poz)=pg exp(

which determines the density in the region z >d /2. For
z <d /2, however, the density vanishes, i.e., p,(z)=0.
Although Eq. (14) is the key equation for obtaining the
density profiles of the ions, it is incomplete due to the
lack of knowledge about the explicit expressions of ¢{’HS
and c“)"‘ for nonuniform density distributions. Since
these are known for a uniform system of charged hard
spheres, we propose to use this knowledge to obtain an
approximation scheme for the corresponding inhomo-
geneous system in the presence of an external field. For
uncharged hard-sphere systems, such an approach has
formed the basis of the WDA of Curtin and Ashcroft [7]
and Denton and Ashcroft [8,9], where ¢!(p(r)) for a
nonuniform system is obtained by evaluating the expres-
sion of ') for a corresponding uniform system with an
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effective density p(r), i.e.,
cMprn=eVp(r)) . (15)

Here the effective weighted density p is defined through
an appropriate weighted average of the actual nonuni-
form density of the system as

p(n)= [dr'p(rw(|r—rl;p(r) , (16)

with a suitably chosen weight function w(|r—r’[;p(r)).
(Throughout this work, we use the notation ¢' '’ and ¢(?
to denote the correlation functions for the uniform sys-
tem.)

We now propose a new WDA route to Eq. (14) for the
nonuniform ionic liquid system under consideration
through generalization and extension of Egs. (15) and
(16). For a uniform neutral ionic system, analytlcal ex-
pressions are available for both Z"ffﬁ (ry,r;) and
~mel(rl,rz) To obtain the corresponding first-order
quantities &HS([{p2}]) and ([ {p2}]), we first ex-
press c,’ as the sum ¢! +cf,1,3’, and the expressions for
the contrlbutlons from a and 8 components for a uniform
system, viz. ') and Z*aﬁ are obtained through functional
integrations of the second-order correlation functions ¢'2)
and ci,B

The proposed WDA is then based on replacing both
the first-order correlation functions ¢ VS and ¢V in Eq.
(14) by their homogeneous counterparts evaluated with
appropriate effective densities. Thus, we write

ca (5[ {pa} D=Caa (PHS(D)+25 ™ (PRI ,

(17a)
P95 [ pad D=0 PPN+ )
(17b)
where
pis(r)= [ drp(r wid(lr—r';p(r))
+fdr’p3(r') Sr—r'l;pie(r)
+fdr’pa we (Ir—r'|;pi5(r))
+ [drpgrwds(r—rlipEd)  (18a)
and
P = [ drp(r S (Ir—r'[;55"(r))
+fdrp3(r')w SUr—r'|;pM5(r))
+fdrpar)w L (r—r' ;1))
+ [drpgrwds(r—r;p(r),  (18b)

with  similar express1ons for g™ (r;[{pa} )
cNr;[{pa) 1), Prea(r), and pP)r) to be obtamed by in-
terchanging a and 8 in Egs. (17) and (18).

The correlation functions ¢ P"HS(r;[{p,}]) and
cPNr;[{p,}]) are evaluated in Eqs (17) using the
effective densities {pise(r)} and {p¥(r)}. The quantity
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pisd(r) can thus be physically interpreted as the effective
total density of a locally uniform fluid to which the actual
nonuniform fluid is mapped so that the contribution to
the hard-sphere part of the one-particle correlation func-
tion arising from the correlation with particles of the ath
component is correctly reproduced when the expression
for the uniform system is evaluated with this density.
Analogously, iif,f)(r) is the effective total density of a lo-
cally uniform and locally neutral fluid, whose electrical
part of the one-particle correlation function arising from
the correlation with particles of the ath component is the
same as that of the actual nonuniform and locally non-
neutral fluid. The effective weighted densities corre-
sponding to the Sth component, i.e., ﬁ(}’fs)( r) and ﬁ‘e{”(r)
can also be similarly interpreted. Since these mappings
are done at every point r, the weighted densities are r
dependent.

Two other effective densities pia®(r) and pi™S(r)
(which are essentially “off-diagonal” effective densities)
are also introduced in Egs. (18) to evaluate we and whs,
respectively, appearing in the expressions of ﬁ(;fs)(r) and

Pe¥(r). We propose to choose these two effective density

J

wHS(|r——r’l;f>)=€‘(2ms(|r——r'|;ﬁ(r))/fdr'6(2ms(!r—r’l;ﬁ(r)) ,
wel(lr——r’|;ﬁ)=t‘(2)el(|r—r'I;ﬁ(r))/fdr'E(2’el(Ir—-r’l;ﬁ(r)) .
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quantities as equal to zero, pa(r) or pi¥(r) and obtain
thereby different WDA schemes.

We follow the approach of Ashcroft and derive expres-
sions for the weight functions by requiring that the first
functional derivative of Egs. (17) with respect to the den-
sities p, or pg would yield the exact appropriate two-
particle correlation functions in the limit of uniform den-
sity. This leads to the results

wi(lr—r'[;p)=wi5 (Ir—r'l;p)

=we(lr—rlip)=wis (r—r'|;p)

=wys(Ir—r1'[;p) , (19a)
w(Ir—r'[;p)=—w(|r—r';p)

=—wg,([r—r';p)

=ws(lr—r'|;p)

=D wy(Ir—r'l;p), (19b)

where the weight functions wyg and w,, are given by

(20a)
(20b)

The expressions for the weighted densities can now be rewritten as

)= [ drwys(r—r ;BRI +osr)]+1 [ drwy(Ir—r ;5N palr' ) —pgr)] ,

pr)= [ dr'wys(r—r'[;p6 N o) +ppr )]+ 4 [ dr'wy(le—r LA palr') = pge]

with similar expressions for pis(r) and p¥(r) obtained
easily by interchanging a and .

We now discuss different choices for the two ‘“off-
diagonal” effective densities piec(r) and pu"™5(r). Since
¢ VHS(r:[{p,}]) has a purely hard-sphere contribution,
one might assume that the effective density pi& with
which ¢.’#5(5) is evaluated should not have a contribu-

tion from w®. This corresponds to the choice

pigtn=o,

which yields p\(r)=p{R(r) and consequently
cPIS(n5[{pa} 1) =cl ™ (r;[{pg}]). Also, for calculating
ﬁg‘l”(r) using Eq. (18b), one can assume that wyg should
be evaluated with an effective density which does not
have an explicit contribution from the electrical part; i.e.,

one assumes

(22a)

—(a)HS

PHS(ry=pi2(r) . (22b)

1

(21a)
(21b)

r

This prescription, which employs Egs. (22a) and (22b) for
the two “‘off-diagonal” effective densities, is denoted here
as scheme A.

In an alternative scheme (scheme B), we use Eq. (22a)
for pysa(r), but p"MS(r) is assumed to be given by Eq.
(22c¢), i.e.,

pHS(ry=p{(r) . (22¢)
In_;et another scheme (scheme C), we assume Eq. (22¢)
for p™MS(r), but pise!(r) also is assumed to be given by
the same quantity, i.e.,

Pris () =p(r) . (22d)

While schemes A, B, and C are fully nonperturbative
in nature, we propose another approach (scheme D) in
the spirit of the recent work of Davis and co-workers [11]
where the electrical part is evaluated perturbatively, i.e.,
one employs [instead of Eq. (17b)] the equation

e[ {pa} D=V (P2 D+ [dre2(Ir—r'l;p0)palz ) —p%1+ [ dre B (Ir—r'l;p0)pslz')—p3] » (23)
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with  po=p2+p5 B> although the contrlbutlon
c VB8 (1;[ {p,}]) is calculated using Eq. (17a) with p{&(r)

of Eq. (18a) and Eq. (22a) of Scheme A. The difference of
Scheme D with the work of Davis and co-workers [11] is
that here we obtain the weight function using the ap-
proach of Ashcroft rather than that of Tarazona.

One now rec;ulres the expressmns for the correlation
functions &' and ¢ for a uniform charged hard-
sphere system, which has been solved within the mean
spherical approximation (MSA) by Waisman and Le-
bowitz [18]. The expressions for the correlation func-
tions in the region |r—r’| <d are given by

e (Ir—r'l;pg)=ap+a,(Ir—r'|/d)
+a,(|r—r'|/d)*, (24)

with  ay=(2ay/m)=—(14+29)%/(1—7)*,

a;=6m(1
+0/22/(1—n)*, n=(7/6)p,d>, and
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~(2)el(|r r |,Po)——(Bqan/€)
X[(2B/d)—(B /d)*|r—r1’|
—1/lt—r'l], (25)

where
B=[x+1—(1+2x)"?]/x
and

x=d [(47B/€)3pq%]'"* .
a

The quantities 2"5(|r—r'|;py) and e@(|r—1'|;p,) are
zero for [r—r'| > d.

The corresponding expressions for c“,}HS and ci,'Be', ob-
tained by functional integrations of Egs. (24) and (25), re-

spectively, are given by

S = — L(14n— 1302+ 57°) /(1 =)+ L In(1 =), 26)
Top =(gp/q,)((x?/12)+(2X /3)+ 4 [(1+2x )2 —1]
—2[(142x)'2—1]— In{(2/x)[(1+2x)2=1]/[(1+2x)' 2 +1]}) . 27)

Equation (27) implies that ¢'l)d= f dr f dpe2(r
= &‘(”el and consequently ¢ ~(1)e1 evaluated as the sum
~(”el+~“ﬁ)°1 is nonzero only when the two components

are evaluated at two different weighted densities g and

pB), Although this is the case in the present scheme for
the mhomo%eneous system, for a uniform ionic hquld the
quantity ¢3,’" (and also FS.) when evaluated in this
manner vanishes, implying that the chemical potential of
each ionic species is only hard-sphere-like and therefore
cannot predict the liquid-gas transition of the ionic solu-
tion. This rather unphysical consequence is, however,

d}n): to the approximation involved in the MSA result for
~(2)el
C aB

An alternative route to F&, through the energy equa-
tion, i.e. using the pair distribution function, can predict
the nonzero contribution for the electric part for the uni-
form ionic fluid, viz.

Fd =—(1287d?) " [3x24+6x+2—2(1+2x)*%] .  (28)

One can obtain " using Eq. (28) in Eq. (4), but the
same, however, will be inconsistent with Eq. (5) and c(2 el
of the MSA solution. Such inconsistencies arising from
approximate theories are many and have been discussed
in the literature [19].
Since in the proposed WDA the consistency between
¢V and cazﬁ) is a necessity, this additional contribution to
?1 ! using Egs. (4) and (28) cannot be evaluated using a
welghted -density procedure. However, if one chooses to
evaluate this term at the bulk density even for the inho-
mogeneous system, it will not contribute to the density
distribution as obtained from Eq. (14) and hence this
term can as well be dropped, as has been done here.
Equations (14) and (17)-(21) thus provide the prescrip-
tion for the calculation of the density profile through the

[

present WDA scheme. Since the density variation is only
along the z direction, simplification can be achieved by
rewriting Eq. (16) as

pz)= [ “dz'p(z" w1z —2';p(2)) , (29)

with the planar averaged weight function @ (|z —z'[;p(z))
defined as

w(|z—z'l;,b‘(z))=f_°0 dx’f_w dy'w(|r—r'|;p(z)), (30)

where the integrations can be performed analytically,
leaving only a one-dimensional integral in Eq. (29) to be
evaluated numerically. The integrals in the denominators
of Egs. (20) can also be evaluated analytically.

III. RESULTS AND DISCUSSION

The nonlinear integral equations [Eq. (14)] for density
are solved numerically using iterative methods with
modified Guoy-Chapman (MGC) density for the EDL as
the initial density input for several values of the surface
charge density o and concentration for 1:1 and 2:2 elec-
trolytes. A uniform mesh was used for discretization and
a simple trapezoidal rule was used for numerical integra-
tions. The results have been obtained for the three fully
nonperturbative schemes A, B, and C of the proposed
WDA as well as scheme D, which evaluates the electrical
contribution through a perturbation expression. The
convergence criterion has been chosen so that the norm
defined as (Z,3M ([p6 " (z)—pl(2:)1/p%}2 /2N)1 72,
with N as the number of mesh points, is a small number
(e.g., <107%) after the nth iteration. The electroneutrali-
ty condition [Eq. (13)] was also satisfied up to the desired
accuracy.
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The parameter values used in our calculations are the
same as those used for simulation [20] and also by Davis
and co-workers [11] and are T=298 K, d =4.25 A, and
€=178.5. For convenience, dimensionless reduced quanti-
ties are used. Thus, the potential and the surface charge
density are measured in units of (Be)”! and (e /d?), re-
spectively, where e is the magnitude of the electronic
charge. Thus we define ¢*(z)=Bet(z) and o*=0d?/e.
The distances are measured in terms of (z /d ) and the re-
duced density of ions is defined as p%(z)=p,(z)d>.

The density distributions for the ions and the mean
electrostatic potentials calculated for the schemes A, B,
C, and D are compared with the results from computer
simulation [11,20] for concentrations 0.1M, 1.0M, and
2.0M for 1:1 and 0.5M for 2:2 electrolytes for different
values of the surface charge densities (o*=0.30 , 0.42,
0.55, 0.70, 0.396, and 0.1704). Of special importance in
EDL theory is the diffuse layer potential (¢,), which is
the value of the electrostatic potential at the closest ap-
proach to the charged surface, i.e., ¥(d /2). Our calcu-
lated results on 9, are compared in Table I with predic-
tions from simulation, MGC theory and also the work of
Davis and co-workers [11]. Although the predicted
values are lower than the corresponding simulation re-
sults in most of the cases, results of scheme A show an
overall good agreement. Scheme C also yields better
values for this quantity in general, although there is an
overprediction to some extent. Although the results are
quite comparable or even better than many methods, the
lack of very good agreement may be due to the fact that
while approximating the electrical part of the correlation
function of a nonuniform system by that of the corre-
sponding uniform system, the same for a locally non-
neutral system is being approximated by that of a locally
neutral system. The results of scheme D, which is similar
to the work of Davis and co-workers [11] (except for the
use of the model of Ashcroft for the hard-sphere part in-
stead of that of Tarazona), are observed to be lower than
their results.

In Figs. 1 and 2 we plot, respectively, the density
profiles of both the ions and the mean electrostatic poten-
tial in dimensionless forms for ¢ =0.1M and o*=0.30
for a 1:1 electrolyte. The results of schemes A, B, and C
are indistinguishable and agree quite well with results of
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FIG. 1. Reduced ion density profiles for a 1:1 electrolyte at
¢=0.1M and o*=0.30. The upper curves refer to counterions
and the lower curves to co-ions. Calculated results are shown
using scheme A ( ), scheme B (—-—-), scheme C
(—++—--—), and scheme D (— — —). Simulation results are
shown as circles.

Monte Carlo (MC) simulation.
shows some deviation.

While at the low concentrations considered in Fig. 1 all
the results show monotonic behavior, structure appears
in the density profile at higher values of concentration
and surface charge density. Thus, the plots of density in
Figs. 3-5 corresponding to ¢ =1M and o*=0.42, 0.55,
and 0.70, respectively, clearly reveal that with an increase
in surface charge, a layering effect due to hard-sphere ex-
clusion sets in and the structure at z=3d /2 is quite clear.

Scheme D, however,

TABLE 1. Diffuse layer potential ¥i§ =¢™*(d /2)=Bey(d /2).

Conc. Schemes from present work
(M) o* Mmc? MGC’ Tarazona® A B C D
1:1 electrolyte
0.1 0.30 4.63 5.34 4.54 4.81 4.78 4.85 4.44
1.0 0.42 3.08 3.74 2.88 3.03 2.94 3.22 2.79
1.0 0.55 4.15 4.26 3.61 3.76 3.58 4.26 3.39
1.0 0.70 5.71 4.74 4.79 4.79 4.50 5.92 4.30
2.0 0.396 2.29 2.99 1.88 1.89 1.80 2.08 1.79
2:2 electrolyte
0.5 0.1704 0.63 1.36 0.532 0.577 0.568 0.574 0.527

2Results from Monte Carlo simulation (Refs. [11] and [20 ]).
YResults from modified Gouy-Chapman theory.
°Results calculated by Davis and co-workers (Ref. [11]).
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6.0

FIG. 2. Mean electrostatic potential in dimensionless form
for a 1:1 electrolyte at ¢ =0.1M and o*=0.30. Calculated re-
sults are shown using scheme A ( ), scheme B (—-—-),
scheme C (—-+—-- —), and scheme D (— — —). Simulation
results are shown as circles.
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6.0 —

o@/¢

3.0 —

0.0
0.5

FIG. 3. Reduced ion density profiles for a 1:1 electrolyte at
¢=1M and 0*=0.42. The key is the same as in Fig. 1.
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FIG. 4. Reduced ion density profiles for a 1:1 electrolyte at
c¢=1M and 0*=0.55. The key is the same as in Fig. 1.
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FIG. 5. Reduced ion density profiles for a 1:1 electrolyte at

¢=1M and 0*=0.70. The key is the same as in Fig. 1.
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While results of scheme B agrees better with the MC re-
sults for z <3d /2, results of scheme C agrees better in
the region z>3d /2. Scheme A, however, shows an
overall good agreement on the average and the layering
effect is most poorly reproduced by scheme D. For the
potential plotted in Fig. 6 corresponding to ¢ =1M and
0*=0.70 (the same as in Fig. 5), however, it is scheme C,
the results for which agree better with the MC results.

At higher concentration (¢ =2M ), the interesting case
of charge inversion as well as oscillation in the potential
profile is predicted by all the schemes, as seen, respective-
ly, from plots of Figs. 7 and 8 for o* =0.396. The charge
inversion is more prominent even at a moderate concen-
tration (¢ =0.5M) in the case of a 2:2 electrolyte (see Fig.
9) due to stronger electrostatic interaction as compared
to the case of a 1:1 electrolyte. The plots of density and
potential profiles shown, respectively, in Figs. 9 and 10
for 0*=0.1704 and ¢ =0.5M of a 2:2 electrolyte indicate
that results of different schemes do not differ significantly
for this case.

It is important to study whether the present WDA
model satisfies the contact theorem for ionic fluids, viz.

Blp+2mat/e)= 3 p,(d/2), 31)

where p is the bulk equilibrium pressure and p,(d /2) is
the density at contact for the ath species. Since a direct

6.0

S50+

0.5 1.6 2.7 3.8 4.9 6.0

z/d

FIG. 6. Mean electrostatic potential in dimensionless form
for a 1:1 electrolyte at c=1M and o*=0.70. The key is the
same as in Fig. 2.
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40 —

0.5 1.5 2.5 3.5 4.5

z/d

FIG. 7. Reduced ion density profiles for a 1:1 electrolyte at
¢=2M and 0*=0.396. The key is the same as in Fig. 1.

30

23

05 [ 25 35 45

FIG. 8. Mean electrostatic potential in dimensionless form
for a 1:1 electrolyte at ¢ =2M and o*=0.396. The key is the
same as in Fig. 2.
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6.0

50—

FIG. 9. Reduced ion density profiles for a 2:2 electrolyte at

z/d

¢=0.5M and 0* =0.1704. The key is the same as in Fig. 1.

FIG. 10. Mean electrostatic potential in dimensionless form
for a 2:2 electrolyte at ¢ =0.5M and o * =0.1704. The key is the

same as in Fig. 2.
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FIG. 11. Reduced weighted-density profiles for a 1:1 electro-

lyte at ¢ = 1M and o * =0.70, calculated using scheme A.
Pus(z)d? —-—-—, pa (z)d® (co-ion); —

(counterion).

(B
1

— —, pa (2)d?

1 l 1 [ 1 I 1 | 1

1.5 2.5 3.5 45 55
z/d

FIG. 12. Plot of the electrical contribution to the one-

particle correlation function [c¢.?(z)].

, weighted-density

a

prescription of Eq. (17b) and self-consistent density of scheme
A; — — —, calculated from perturbation expression of Eq. (23)
but using the same density as above.
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derivation of the contact theorem for the present WDA
model has not yet been possible, we attempt here to veri-
fy whether our calculated densities satisfy Eq. (31).
Thus, at ¢=0.1M and o0*=0.30, the quantity
[Saa(d/2)/3.p0] as predicted by Eq. (31) is 103.7,
whereas the same calculated from the present WDA den-
sities of Schemes A, B, C, and D are 104.9, 105.3, 104.6,
and 104.5, respectively. The proposed WDA thus yields
a density which satisfies the contact theorem to a rather
good accuracy.

The main feature of the proposed WDA is the evalua-
tion of the electrical contribution to the one-particle
correlation function ¢'1®(r) through the weighted densi-
ties ﬁg‘lﬂ(r) and f)*ef Y(r). The corresponding hard-sphere
contribution ¢{"HS(r) uses the weighted densities piga(r)
and p\2)(r) (which are identical in Schemes A and B). In
order to obtain further insight, we have plotted in Fig. 11
these effective densities corresponding to the self-
consistent solution of Scheme A. Although at large dis-
tance all of them approach the same limiting bulk density
(p3 =0.0925 for ¢ =1M), they vary drastically near the
wall. The spatial variation of ﬁ(,fs)(r) is more in compar-
ison to that of the corresponding quantity for neutral
fluids [9]. The quantity p?(r) corresponding to the
counterions is higher than that for co-ions, viz. p\(r).
This indicates that the effective locally uniform fluid is
not locally neutral and provides a net nonvanishing con-
tribution to ¢'1’®!(r) through Eq. (17b). Since this quanti-
ty is of importance in the present work, we have plotted
in Fig. 12 the quantity c'1’®!(r) from the WDA of Scheme
A and compared the same with that obtained by evaluat-
ing the perturbation expression of Eq. (23) using the same
density of Scheme A. The latter seems to yield values of
larger magnitude.
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IV. CONCLUDING REMARKS

We have formulated a weighted-density approach to
the density-functional theory of inhomogeneous ionic
liquids. The WDA proposed recently by Curtin and Ash-
croft [7] and Denton and Ashcroft [8,9] has led to
effective schemes for the study of nonuniform neutral
fluids. The present work is essentially a generalization
and extension of the WDA to nonuniform ionic systems.
Application to the case of charged hard spheres near a
hard wall with nonzero surface charge, i.e., the restricted
primitive model of the electric double layer, is discussed.

The results on the ionic density distribution as well as
diffuse double-layer potential using the present WDA
schemes show that the evaluation of the electrical contri-
bution of a nonuniform and locally non-neutral solution
using the correlation functions of a uniform and locally
neutral electrolyte is a good approximation for low sur-
face charges. At higher surface charges also, the appear-
ance of the layering effect as well as charge inversion at
higher concentration for a 1:1 electrolyte and at
moderate concentration for a 2:2 electrolyte indicates the
success of the model. Among the three different fully
nonperturbative schemes A, B, and C proposed here,
scheme A is perhaps more suitable and provides results in
better overall agreement with simulation data for both
density distribution and potential characteristics. While
the present study has been restricted to the RPM of the
EDL, further generalizations and application to more ela-
borate models are of interest and are currently under in-
vestigation.
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